
SPECIAL SECTION: 
 

CURRENT SCIENCE, VOL, 79, NO. 6, 25 SEPTEMBER 2000 766

Classification of instabilities in the flow past 
flexible surfaces 
 
V. Kumaran 
 
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India 
 

The stability of the laminar flow in flexible tubes and 
channels could be influenced by the flexibility of the 
walls, and these instabilities are qualitatively differ-
ent from those in rigid tubes and channels. In this 
paper, the instabilities of the laminar flow in flexible 
tubes and channels are classified according to the 
asymptotic regime in which they are observed, the 
flow structure, the scaling of the critical Reynolds 
number (ρρVR/µµ) with the dimensionless parameter 
∑∑ = (ρρGR2/µµ2), and the mechanism that destabilizes 
the flow. Here, ρρ and µµ are the fluid density and vis-
cosity, G is the shear modulus of the wall material, R 
is the cross stream length scale and V is the maxi-
mum velocity. Three types of instabilities have been 
analysed. The viscous instability is observed in the 
limit of low Reynolds number when the fluid inertia 
is insignificant, and the critical Reynolds number 
scales as Re ∝∝ ∑∑. The destabilizing mechanism is the 
transfer of energy from the mean flow to the fluctua-
tions due to the shear work done by the mean flow at 
the surface. In the high Reynolds number inviscid 
modes, the critical Reynolds number scales are 
Re ∝∝ ∑∑1/2, and there is a critical layer of thickness 
Re–1/3 where viscous stresses are important. The de-
stabilizing mechanism is the transfer of energy from 
the mean flow to the fluctuations due to the Reynolds 
stresses in the critical layer. The high Reynolds 
number wall mode instability has a wall layer of 
thickness Re–1/3 at the wall, where viscous stresses 
are important and the critical Reynolds number 
scales as Re ∝∝ ∑∑3/4. The destabilizing mechanism is 
the transfer of energy from the mean flow to the 
fluctuations due to the shear work done by the mean 
flow at the interface. 

 
Introduction 
 
The laminar–turbulent transition in flows past compliant 
surfaces has been extensively studied due to its impor-
tance in marine and aerospace applications. In these 
applications, it is desirable to reduce the drag force ex-
erted by flow, and the transition delay due to compliant 
walls has been a potential candidate for drag reduction. 
The first studies in this area were carried out by 
Kramer1,2, who speculated that the efficiency of swim- 
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ming of dolphins was due to the transition delay in-
duced by the compliant nature of their skins. Though 
the original mechanism suggested by Kramer is in 
doubt3,4, there has been a lot of subsequent theoretical 
and experimental work on the transition delay in flows 
past compliant surfaces. The first theoretical studies on 
the effect of a compliant wall on flow stability were 
carried out by Benjamin5,6 and Landahl7. By extending 
the stability theory of Tollmien8 and Schlichting9 for the 
flow past rigid surfaces, Benjamin5 showed that a flexi-
ble non-dissipative wall tends to stabilize the Tollmien-
Schlichting instability, which is the destabilizing 
mechanism in the flow past a rigid surface. In addition, 
Benjamin5 and Landah7 also pointed out that there is an 
additional mode of instability that could exist in an in-
viscid flow, which was termed the flow-induced surface 
instability. Since then, there has been much work on the 
flow past a Kramer-type surface3,4,10,11. Most of the sub-
sequent studies have determined the stability by a nu-
merical solution of the Orr-Sommerfeld equation for the 
fluid velocity, which requires sophisticated numerical 
techniques due to the stiffness of the governing equa-
tion. An asymptotic analysis was used10 to obtain the 
stability characteristics when the critical layer near the 
wall is well separated from the viscous sublayer, and 
Carpenter and Garrad4 used a potential flow calculation 
to derive approximate stability criteria. The consensus 
appears to be that a compliant wall does indeed lead to 
drag reduction due to a postponement in the transition 
from laminar to turbulent flow. A numerical study of 
the effect of flexible walls on the stability of a plane 
Poiseuille flow was carried out12, using an extension of 
the techniques developed by Lin13. However, there does 
not appear to be much work on the flow through a tube 
bounded by a flexible wall. In part, this may be because 
the linear stability analysis predicts that the fully devel-
oped flow is stable, and the Tollmien-Schlichting insta-
bility does not exist for a rigid tube. 

While the above studies have been motivated by ma-
rine and aerospace applications, flows in flexible tubes 
and channels are also encountered in biological applica-
tions. The Reynolds number in the latter case is rela-
tively low compared to those encountered in marine and 
aerospace applications, and fluid inertia could even be 
negligible in some cases. There have been relatively 
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few studies in parameter regimes of interest in biologi-
cal applications. The first experimental studies appear 
to have been carried out by Krindel and Silberberg14, 
who examined the pressure drop required for flow in a 
gel walled tube. They came to the surprising conclusion 
that the laminar flow in a gel walled tube becomes un-
stable at a Reynolds number lower than the value of 
2100 for a rigid tube, and instability appeared to be ac-
companied by oscillations in the wall of the tube. Moti-
vated by this, a series of linear stability studies in 
various parameter regimes were carried out15–28 for the 
flow in tubes and channels bounded by gel walls. The 
results of these studies indicated that there are at least 
three modes of instability in flexible walled channels 
and tubes which are qualitatively different from those in 
rigid channels and tubes. More recently, experimental 
confirmation of the ‘viscous instability’ in the limit 
where fluid inertia is negligible has been reported29,30, 
and a nonlinear analysis of the viscous instability has 
also been carried out31. The classification of these in-
stabilities is the subject of the present paper, and par-
ticular attention is focused on the asymptotic regime 
where these are observed, the flow structure and the 
destabilizing mechanism. Attention is restricted to lin-
ear stability analyses of the flow past gel walled tubes 
and channels, since this has been the most comprehen-
sively studied problem. 

Methodology 

The configurations for the base flow in a gel walled 
tube and channel are shown in Figure 1. The equations 
governing the fluid flow are the incompressible Navier-
Stokes equations 
 

∇.v = 0 (1) 
 
ρ(∂tv + v.∇v) = – ∇p + µ∇2v, (2) 

 
where v and p are the velocity and pressure fields, ρ and 
µ are the fluid density and viscosity respectively, and ∂t 
represents the time derivative. The dynamics of the 
flexible wall is represented by a displacement field u, 

which is the displacement of material points from their 
steady state positions due to fluctuations in the fluid 
stresses at the interface. The displacement field is gov-
erned by linear elasticity equations for an incompressi-
ble material 
 

∇.u = 0 (3) 
 

).(222 uuu tgt Gp ∂∇+∇+−∇=∂ µρ  (4) 

 
In the above equation, the left side is the rate of change 
of momentum due to acceleration, and the density of the 
wall material is assumed to be equal to that of the fluid. 
The first term on the right is the gradient of a pressure 
which is required to ensure incompressibility. The sec-
ond term on the right is the divergence of an elastic 
stress, 
 

σe = G(∇u + (∇u)T), (5) 
 
where G is the coefficient of elasticity. The third term 
on the right side of eq. (4) is the divergence of a viscous 
stress, 
 

σv = µg(∇∂tu + (∇∂tu)T), (6) 

 
where ∂tu is the velocity field on the wall material, and 
µg is the viscosity. The boundary conditions at the inter-
face between the wall material and the rigid surface are 
zero displacement conditions u = 0, while the boundary 
conditions between a rigid surface and the fluid are the 
no-slip conditions v = vs, where vs is the velocity of the 
surface. Continuity of velocity and continuity of stress 
conditions are applied at the interface between the fluid 
and the wall material. 

In the linear stability analysis, small perturbations v′ 
and u′ are placed on the base state velocity and dis-
placement field. The base flow for a channel is a plane 
Couette flow 

 

v vx
z

z
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R
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Figure 1.  Configurations and coordinate systems used for analysing the flow past flexible surfaces. 
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and the perturbations are the form 
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where x and z are the flow and gradient directions re-
spectively, k is the wave number in the flow direction 
and s is the growth rate. For a tube (Figure 1 b), the 
base flow is a Hagen-Poiseuille flow 
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where r, θ and x are the radial, azimuthal and axial co-
ordinates in a cylindrical coordinate system with axis 
along the centerline of the tube. The above form of the 
perturbations is inserted into the conservation equa-
tions, and the solutions for the perturbations ~ ~u vand  
which are consistent with the boundary conditions at the 
rigid surfaces are determined as a function of wave 
number k and the growth rate s. These are inserted into 
the velocity and stress boundary conditions at the inter-
face between the fluid and the wall material, and the 
dispersion matrix is determined. The determinant of this 
matrix is set equal to zero in order to determine the 
growth rate s. The perturbations are stable if the real 
part of the growth rate is negative, and they are unstable 
if the real part is positive. The transition from stable to 
unstable modes takes place when the real part of the 
growth rate passes through zero. 

There are reasons to expect that the instability of the 
flow past a flexible surface could be very different from 
that for the flow past a rigid surface. 

 
1. In addition to the Reynolds number Re = (ρVR/µ), 

which is the ratio of inertial and viscous forces, 
there are three additional dimensionless parame-
ters, the ratio of elastic and viscous forces 
∑ = (ρGR2/µ2), the ratio of viscosities µr = (µg/µ), 
and the ratio of the thickness of the fluid and wall 
material. This implies that there is more than one 
parameter that can be modified to induce or delay 
instability, in contrast to flows past rigid surfaces 
where the Reynolds number is the only parameter 
which determines the stability of the flow. 

2. Another important difference between the flow 
past rigid and flexible surfaces is that a normal ve-
locity is permitted at a flexible surface. Many of 
the classical theorems of hydrodynamic stability, 
such as the Rayleigh and Fjortoft theorems32, are 
not valid for flow past flexible surfaces because 

they assume that the normal velocity is zero at the 
wall. Consequently, the flow past a flexible sur-
face could go unstable in parameter regimes where 
the theorems of hydrodynamic instability would 
predict that the flow past a rigid surface is stable. 

3. In the flow past a rigid surface, the coupling be-
tween the mean flow and the fluctuations is due to 
the nonlinear inertial term in the momentum con-
servation eq. (2), and the destabilizing mechanism 
is the transfer of energy between the mean flow 
and the fluctuations due to the Reynolds stresses. 
In the flow past a flexible surface, additional cou-
plings arise due to the variation of the mean veloc-
ity at the fluid–wall interface caused by the 
displacement of the surface. This results in an ad-
ditional mode of transport of energy from the 
mean flow to the fluctuations due to the shear 
work done by the mean flow at the interface, 
which could also destabilize the flow. 

 
Therefore, the instability of the flow past a flexible sur-
face is not just a modification of the rigid flow instabil-
ity, but could be qualitatively different. 

The linear stability equations for the fluid and the 
wall material are difficult to solve analytically, except 
in certain asymptotic limits. Therefore, it is necessary to 
obtain analytical results in asymptotic limits, and extend 
the calculation numerically in the intermediate regime. 
The asymptotic limits where an instability occurs, and 
the physical mechanism for the instability, are summa-
rized here. 

Viscous instability 

The viscous instability in the flow past a flexible sur-
face was first reported by Kumaran et al.15 for the Cou-
ette flow past a flexible surface (Figure 1 a), and 
subsequently analysed16 for the flow in a flexible tube. 
More recently, a nonlinear analysis was carried out by 
Shankar and Kumaran27, and experimental studies29,30 
have also confirmed the existence of this instability. In 
the low Reynolds number limit, the inertial terms in the 
conservation equation are neglected, and the Stokes 
equations for the fluid in this limit are 
 

∇.v = 0, (11) 
 
–∇p + µ∇2v = 0, (12) 

 
If the Reynolds number is set equal to zero, the only 
dimensionless parameters which affect the dynamics of 
the perturbations are Γ = (Vµ/GR), which is the ratio of 
viscous forces in the fluid and elastic focus in the wall 
material, and the ratio of viscosities µr, and the ratio of 
the thickness of the wall and the fluid layers. 
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Figure 2.  Mechanism of viscous instability in the flow past flexible 
surfaces. 

 
 
There is no instability in the zero Reynolds number 

limit for the flow past a rigid surface, because the non-
linear inertial terms in the conservation equation which 
couples the mean flow to the fluctuations is not present. 
In addition, the Stokes equations are quasi steady, and 
do not contain any explicit time dependence. The dy-
namics in the flow past a flexible surface is qualita-
tively different, because the time dependence enters 
through the elastic terms in the conservation equations 
for the wall material. There is also a coupling between 
the mean flow and the fluctuations in the tangential ve-
locity boundary condition at the interface, due to the 
variation in the mean velocity with height. This can be 
explained as follows. Consider the interface between a 
fluid and a flexible surface as shown in Figure 2. The 
tangential velocity continuity condition for this configu-
ration is applied at the displaced interface z = uz for a 
plane Couette flow 

 
vx|z = uz = (∂tux)|uz, (13) 
 

where vx is the tangential velocity at the surface, and ux 
is the tangential displacement field. In the linear ap-
proximation, the above equation is linearized using a 
Taylor series expansion about z = 0 to obtain, correct to 
first order in the perturbations to the displacement and 
velocity fields, 
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The second term on the left side of the velocity bound-
ary condition (14) accounts for the variation in the ve-
locity of the interface due to the change in surface 
height. This term results in a coupling between the 
mean flow and the fluctuations, and this destabilizes the 
flow when the dimensionless parameter Γ increases be-
yond a critical value. The physical mechanism for the 
instability is the transfer of energy from the mean flow 
to the fluctuations due to the shear work done by the 
mean flow at the interface. When this rate of energy 
transfer exceeds the rate of viscous dissipation of en-
ergy in the fluid and the gel, the flow becomes unstable. 

 
Figure 3.  The dimensionless parameter Γt for transition from stable 
to unstable modes as a function of the wave number k for different 
values of the ratio of radii H and for µr = 0 for the flow in a flexible 
tube. ¡, H = 1.1; r, H = 1.3; £, H = 2; ¯, H = 5; ∇, H = 10; ×, 
H = 100. 

 
 
The typical neutral stability curves in the Γ – k plane 

for the flow in a flexible tube (Figure 1 b) are shown in 
Figure 3 (ref. 16). The results are qualitatively similar 
for the plane Couette flow (Figure 1 a). It is observed 
that the neutral stability curve has a minimum at a finite 
value of wave number, and perturbations with this wave 
number become unstable when Γ is increased beyond a 
critical value. The results of the analysis for a plane 
Couette flow have been compared with experimental 
results29,30, and agreement has been found with no ad-
justable parameters. An example of the comparison is 
shown in Figure 4 (for experimental details, see refs 29 
or 30). 

Inviscid instability 

The inviscid instability occurs in the limit of high Rey-
nolds number Re � 1 where the inertial stresses in the 
fluid are balanced by the elastic stresses in the wall ma-
terial (ρV2/G) ~ 1, or Re ∝ ∑1/2 where ∑ = (ρGR2/µ2). In 
this limit, the flow in a tube exhibits interesting behav-
iour19,25,26. The classical theorems of hydrodynamic sta-
bility of Rayleigh, Fjortoft and others were extended for 
this case by Kumaran19 and Shankar and Kumaran26. 

These studies indicate that for a mean flow with mean 
velocity v x = 0  at the wall, the possibility of an insta-
bility depends on the parameter 
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Figure 4.  The dimensionless parameter Γc which is the minimum of 
the Γt vs k curve for the transition from stable to unstable modes as a 
function of the ratio of fluid and gel thicknesses H for different gels. 
Solid line – theoretical prediction for G′ = 4000 Pa; broken 
line – theoretical prediction for G′ = 1000 Pa; 0, ¡, H = 4490 µ, 
G′ = 2305 Pa; o, H = 4699 µ, G′ = 3788 Pa; ¯, H = 4600 µ, 
G′ = 4214 Pa; r, H = 4690 µ, G′ = 2642 Pa; s, H = 4490 µ, 
G′ = 2354 Pa; v, H = 4678 µ, G′ = 4040 Pa; w, H = 4690 µ, 
G′ = 3595 Pa; +, H = 4150 µ, G′ = 947 Pa; ×, H = 4300 µ, 
G′ = 1027 Pa. 

 
 

It can be shown that the flow could become unstable 
only if the parameter H(r) < 0 somewhere in the flow. 

For a parabolic velocity profile and for axisymmetric 
perturbations n = 0, the parameter H(r) is identically 
zero, and so there is no possibility of an instability. The 
asymptotic analysis of Kumaran17 showed that in the 
leading order approximation, where viscous effects are 
neglected, the parabolic flow in a flexible tube is neu-
trally stable to axisymmetric perturbations. The correc-
tion to the growth rate due to viscous effects was 
calculated using an energy balance approach. It was 
found that there are two mechanisms of energy trans-
fer – one due to the shear work done at the interface 
(which is the mechanism that destabilizes a viscous 
flow), and the transfer from the mean flow to the fluc-
tuations due to the Reynolds stress term in the momen-
tum equation. These two turn out to be equal in 
magnitude and opposite in direction, and therefore there 
is no net energy transfer from the mean flow to the fluc-
tuations. However, there is a dissipation of energy due 
to the presence of a viscous wall layer of thickness 
Re–1/2 at the wall, and this stabilizes the perturbations. 

The factor H(r) is negative for the developing flow in 
a tube of constant cross section, and the flow in a con-
verging tube. The stability of these velocity profiles to 
axisymmetric perturbations was analysed by Shankar 

and Kumaran25. In these flows, the inviscid stability 
equation (equivalent to the Rayleigh equation) has a 
singularity at a point where the wave speed is equal to 
the flow speed. In the ‘critical layer’ of thickness Re–1/3 
around this point, viscous stresses become important 
and it is necessary to incorporate viscous effects. These 
are included using asymptotic expansions32, and the 
results indicate that the flow does become unstable 
when the Reynolds number exceeds a certain value. The 
mechanism of instability is the transfer of energy from 
the mean flow to the fluctuations due to the Reynolds 
stress terms in the critical layer. The instability Rey-
nolds number has a minimum at a finite value of wave 
number k, and increases proportional to k–1 for k � 1 
and proportional to k for k � 1. This is shown in Figure 
5 (ref. 25), where the Reynolds number for transition 
from stable to unstable modes is shown as a function of 
the wave number k for a developing flow velocity pro-
file when X, the ratio of the distance from the entrance 
and the radius of the tube, is 0.05. The critical Reynolds 
number, which is the minimum value of the Reynolds 
number for transition from stable to unstable modes, is 
found to increase proportional to ∑1/2 in the limit of 
high Reynolds number, and shown in Figure 6 (ref. 25) 
for different distances from the entrance of the tube. 
Therefore, these modes are qualitatively different from 
the inviscid modes in a rigid tube, where the critical 
Reynolds number tends to a constant value in the limit 
of high elasticity. 

The function H(r) is also negative for parabolic flows 
in a flexible tube when the perturbations are non-
axisymmetric (n > 0). The behaviour of the Reynolds 
number for the transition from stable to unstable modes  
 

 

 
Figure 5.  The Reynolds number for transition from stable to unsta-
ble modes as a function of wave number k for a developing flow 
velocity profile at a distance X = 0.05 from the entrance of the tube 
for ∑ = 109 and H = 2. 
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Figure 6.  Critical Reynolds number as a function of ∑ = (ρGR2/µ2) 
for different values of X. 

 
 

 

Figure 7.  Critical Reynolds number for non-axisymmetric modes as 
a function of the parameter ∑ = (ρGR2/µ2) for a flexible tube with 
H = 2 and ratio of viscosities µr = 0. The dotted line shows the con-
tinuation of the viscous mode from the low Reynolds number analy-
sis. 

 
 

as a function of the wave number k is similar to that for 
non-parabolic flows, and shows a minimum at a finite 
value of the wave number k. The critical Reynolds num-
ber, shown in Figure 7 (ref. 26), is a minimum for non-
axisymmetric perturbations with azimuthal wave 
number n = 2. The dotted line shows the continuation of 

the viscous modes from the low Reynolds number 
analysis, and it is seen that the inviscid mode has a 
lower critical Reynolds number than the continuation of 
the viscous mode. 

5.  Wall mode instability 

The wall mode instability is observed in the limit of 
high Reynolds number, where the viscous stresses be-
come important in a wall layer of thickness O(Re–1/3) 
smaller than the macroscopic scale. The stability of the 
wall modes in the asymptotic regime Re ∝ ∑2/3 was ana-
lysed by Kumaran22,24, and it was found that the wall 
modes are always stable in this regime. However, the 
asymptotic analysis of Shankar and Kumaran27 showed 
that there is an instability in the asymptotic regime 
Re ∝ ∑3/4. 

In contrast to the inviscid instability, the streamwise 
velocity in the wall layer for the wall modes is O(Re–1/3) 
larger than that in the outer (inviscid) flow. Therefore, 
the velocity in the wall layer drives the outer flow, in 
contrast to the inviscid modes where the velocity in the 
outer flow is dominant. However, the force balances are 
rather subtle. The inertial and elastic stresses are of the 
same order of magnitude in the wall medium. The pres-
sure forces due to the outer flow provide the dominant 
contribution to the normal force at the surface, even 
though the velocity in the outer flow is small compared 
to that in the wall layer. The ratio of the inertial forces  
 

 
 

 
Figure 8.  Comparison of the Reynolds number for transition from 
stable to unstable modes obtained from asymptotic results27 (lines) 
with the intermediate Reynolds number numerical results20 (dotted 
lines and symbols) of the Couette flow past a flexible surface. µr = 0 
for all cases plotted. 
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Figure 9.  Comparison of the Reynolds number for transition from 
stable to unstable modes obtained from asymptotic results28 (lines) 
with the intermediate Reynolds number numerical results21 (dotted 
lines and symbols) of through a flexible tube. µr = 0 for all cases 
plotted. 
 

 
Figure 10.  Comparison of the Reynolds number for transition from 
stable to unstable modes obtained from asymptotic results28 (lines) 
with the numerical results obtained from the wall mode analysis22 
(dotted lines and symbols) of through a flexible tube. µr = 0 for all 
cases plotted. 

 
 

in the outer layer and the elastic forces in the wall 
medium is given by the dimensionless number 
Λ = (ρV2/G)1/2. However, the flow does not become un-
stable when this number is O(1) (refs 22, 24), but when  
this dimensionless number is of O(Re1/3) (ref. 27), be-
cause the pressure force due to the outer flow is 
O(Re1/3) larger than the tangential and normal stresses 

in the wall layer. This implies a scaling Re ∝ ∑3/4 in 
terms of the dimensionless parameter ∑ = (ρGR2/R2) for 
these modes. This is higher than the scaling Re ∝ ∑1/2 
for the inviscid modes, and consequently these modes 
are more stable than the inviscid modes. However, this 
instability is likely to be observed in specific cases, 
such as the Couette flow in a channel (Figure 1 a) where 
there is no inviscid instability. 

A comparison between the asymptotic analysis of 
Shankar and Kumaran27,31 and previous numerical re-
sults20–22 is shown in Figures 8–10. It is seen that the 
asymptotic analysis accurately captures the neutral sta-
bility curves for the Couette flow in a channel20 at in-
termediate Reynolds numbers, as well as the wall 
modes22 for the flow in a tube at intermediate Reynolds 
numbers and the continuation of the viscous modes in a 
tube at intermediate Reynolds number21. 

6.  Conclusions 

The instabilities of the flow in flexible tubes and chan-
nels have been classified on the basis of the asymptotic 
regime where they are observed, the destabilizing 
mechanism and the flow structure of the neutrally stable 
perturbations. These are 
 
1. The viscous modes, which are observed in the limit 

of low Reynolds number Re � 1. The critical Rey-
nolds number for these modes follows the scaling 
law Re ∝ ∑, where the dimensionless parameter 
∑ = (ρGR2/µ2) is independent of the fluid velocity. 
Though this scaling law is anticipated from dimen-
sional analysis, it is necessary to carry out the stabil-
ity calculations to determine whether the flow can 
become unstable. There is a balance between the vis-
cous forces in the fluid and the elastic forces in the 
wall material in this regime, and inertia in the fluid 
and the wall material is negligible. The destabilizing 
mechanism in this case is the transfer of energy from 
the mean flow to the fluctuations due to the shear 
work done by the mean flow at the interface. 

2. The inviscid modes in the limit Re � 1 and 
Re ∝ ∑1/2, where there is a balance between the iner-
tial forces in the fluid and the elastic forces in the 
wall material. Though the scaling is predicted by 
dimensional analysis, the linear stability analysis 
indicated that the flow becomes unstable only in cer-
tain situations such as for axisymmetric perturba-
tions in developing flows and flows in converging 
tubes, and for non-axisymmetric perturbations in a 
fully developed flow. These modes are characterized 
by the presence of a critical layer of thickness Re–1/3 

in the flow where the viscous stresses become 
important. The destabilizing mechanism is the 
transfer of energy due to the Reynolds stresses in the 
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critical layer. However, these modes are not a con-
tinuation of the Tollmien–Schlichting instability in 
rigid tubes and channels, since the critical Reynolds 
number is proportional to (ρGR2/µ2)1/2 in the limit of 
large elasticity, whereas the critical Reynolds num-
ber of the Tollmien-Schlichting modes converges to 
a finite value in this limit. 

3. The wall mode instability which is observed in the 
limit Re � 1 and Re ∝ ∑3/4. In this case, there is a 
viscous wall layer of thickness Re–1/3 at the flexible 
surface, and the destabilizing mechanism is the 
transfer of energy from the mean flow to the fluctua-
tions due to the shear work done by the mean flow at 
the interface. The presence of tangential motion in 
the wall material is essential for inducing this insta-
bility. 
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